
Frontiers in Neutrino Physics

- Neutrinos as a Probe
- Spectra
- Intrinsic Properties
- Astrophysics/Cosmology/Geophysics

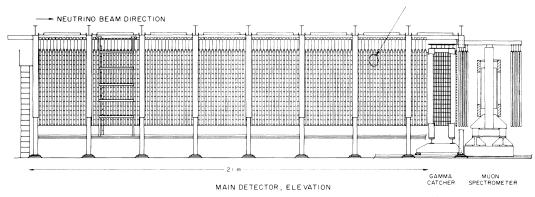


FIG. 1. A schematic drawing of the BNL-Brown-KEK-Osaka-Pennsylvania-Stony Brook neutrino detector.

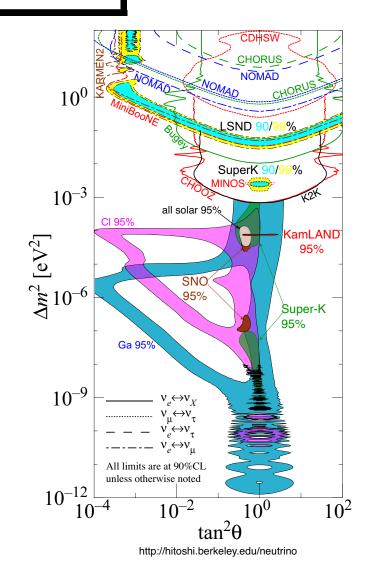
Neutrinos as a Unique Probe: $10^{-33}-10^{+28}$ cm

Particle Physics

- $\nu N, \mu N, e N$ scattering: existence/properties of quarks, QCD
- Weak decays $(n \to pe^-\bar{\nu}_e, \mu^- \to e^-\nu_\mu\bar{\nu}_e)$: Fermi theory, parity violation, quark mixing
- Neutral current, Z-pole, atomic parity: electroweak unification, field theory, m_t ; severe constraint on physics to TeV scale
- Neutrino mass: constraint on TeV physics, grand unification, superstrings, extra dimensions; seesaw: $m_{
 u} \sim m_q^2/M_{\rm GUT}$

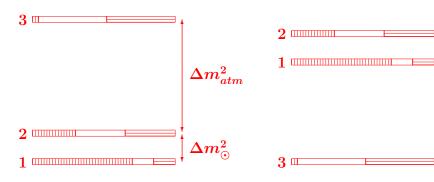
Astrophysics/Cosmology

- Core of Sun
- Supernova dynamics
- Atmospheric neutrinos (cosmic rays)
- Violent events (AGNs, GRBs, cosmic rays)
- Large scale structure (dark matter)
- Nucleosynthesis (big bang small A; stars \rightarrow iron; supernova large N)
- Baryogenesis
- Simultaneous probes of ν and astrophysics
- Interior of Earth


Neutrino Spectra

ν Oscillations

 $ullet P_{
u_a
ightarrow
u_b} = \sin^2 2 heta \sin^2 \left(rac{\Delta m^2 L}{4E}
ight)$


3ν Patterns

- Solar: LMA
 (SNO, KamLAND, Borexino)
- $\Delta m_{\odot}^2 \sim 8 \times 10^{-5} \ {\rm eV^2}$, mixing large but nonmaximal
- ullet Atmospheric + K2K + MINOS: $|\Delta m^2_{
 m Atm}| \sim 2.4 imes 10^{-3} {
 m eV^2}$, near-maximal mixing
- Reactor: U_{e3} small

• Mixings: let $\nu_{\pm} \equiv \frac{1}{\sqrt{2}} \left(\nu_{\mu} \pm \nu_{\tau} \right)$:

$$egin{array}{lll}
u_3 & \sim &
u_+ \
u_2 & \sim & \cos heta_\odot \;
u_- - \sin heta_\odot \;
u_e \
u_1 & \sim & \sin heta_\odot \;
u_- + \cos heta_\odot \;
u_e \end{array}$$

- Normal hierarchy
 - Analogous to quarks, charged leptons
 - $\beta\beta_{0\nu}$ rate very small

- Inverted hierarchy
 - $-\beta\beta_{0\nu}$ if Majorana

ullet Degenerate pattern for $|m|\gg \sqrt{|\Delta m^2|}$

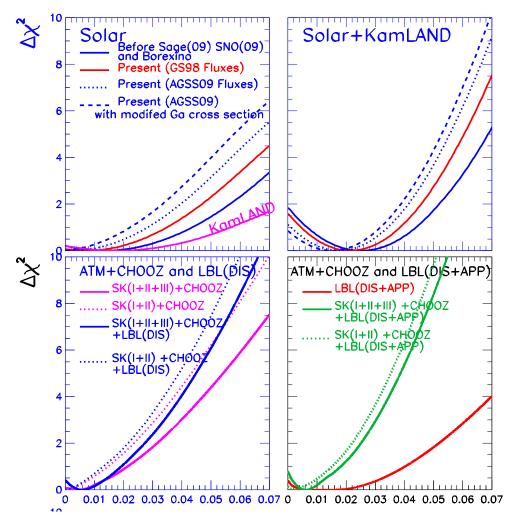
Outstanding Issues (intrinsic properties)

- Scale of underlying physics? (string, GUT, TeV?)
- Mechanism? (seesaw, LED, HDO, stringy instanton?)
- Hierarchy, U_{e3} , leptonic CP violation? (mechanism, leptogenesis)
- Absolute mass scale? (cosmology)
- Dirac or Majorana? (mechanism, scale, leptogenesis)
- Baryon asymmetry? (leptogenesis, electroweak baryogenesis, other?)

Outstanding Issues (intrinsic properties)

- Scale of underlying physics? (string, GUT, TeV?) (LHC, flavor)
- Mechanism? (seesaw, LED, HDO, stringy instanton?)(indirect: LHC)
- Hierarchy, U_{e3} , leptonic CP violation? (mechanism, leptogenesis) (long baseline, reactor, $\beta\beta_{0\nu}$, supernova)
- Absolute mass scale? (cosmology) (β decay, cosmology, $\beta\beta_{0\nu}$, supernova)
- Dirac or Majorana? (mechanism, scale, leptogenesis) $(\beta \beta_{0\nu})$
- Baryon asymmetry? (leptogenesis, electroweak baryogenesis, other?)
 (indirect: LHC)

Other properties


- Models
- ν interactions (MINERνA,
 SciBooNE, SNS [CLEAR],
 MicroBooNE, NuSOnG)
- Puzzles/anomalies (LSND, NuTeV, MiniBooNE, GSI)
- Quantum subtleties
- Sterile ν 's (OscSNS)
- ν decay
- Electromagnetic moments
- Decoherence

- Non-standard interactions
- Neutrino counting
- Heavy ν 's
- CPT, Lorentz, equivalence violation
- FCNC (associated $\tilde{\nu}$, $\tilde{\ell}$)
- ullet R_P violation
- ullet $u
 ightarrow ar{
 u}$
- Mass-varying ν 's
- Time-varying ν 's
- ν interferometry

U_{e3} , δ_{CP} , hierarchy

$$U = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{atmospheric, } s_{23}^2 \sim \frac{1}{2}} \underbrace{\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}}_{s_{13}^2 \lesssim 0.035, \; \delta = ?} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{Solar, } s_{12}^2 \sim 0.3} \underbrace{\begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{Majorana only}}$$

• Need $s_{13} \neq 0$ for leptonic CP and hierarchy by matter effects

Gonzalez-Garcia, Maltoni, Salvado, 1001.4523

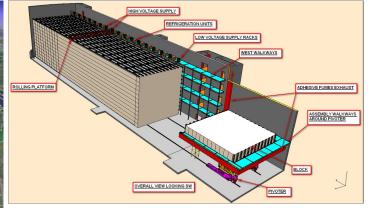
- $s_{13}^2 \lesssim 0.035$ at 90% (CHOOZ reactor $ar{
 u}_e$ disappearance; global)
- Hints for $s_{13} \neq 0$: MINOS $(0.7\sigma \text{ excess from } \nu_{\mu} \rightarrow \nu_{e}?);$ Solar vs KamLAND
- Future reactor: near and far detectors (s_{13} only)
 - Double CHOOZ (France)
 - Daya Bay (China)
 - RENO (South Korea)

Long Baseline (LBL) Oscillation Experiments

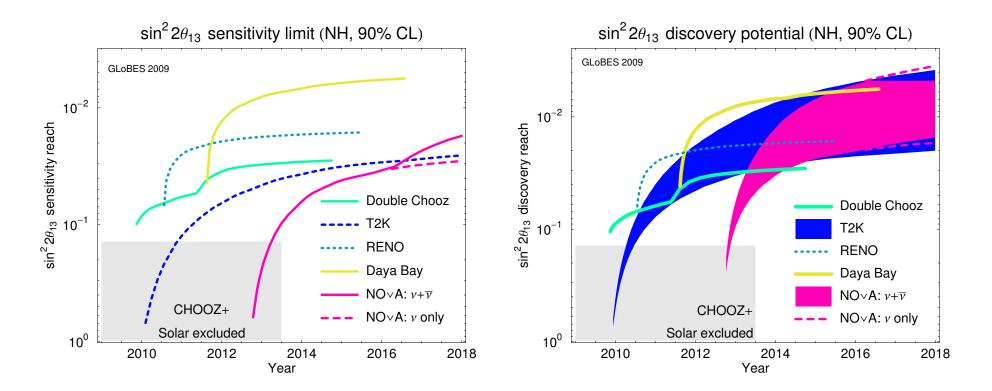
• 3 ν oscillations, small s_{13} and Δm_{\odot}^2 (Akhmedov et al, JHEP 04, 078):

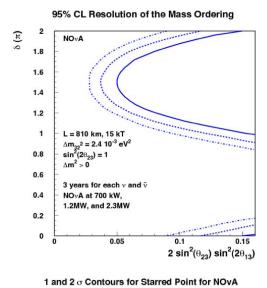
$$egin{aligned} P_{
u\mu o
u e} &= lpha^2\,\sin^22 heta_{12}\,c_{23}^2rac{\sin^2A\Delta}{A^2} + 4\,s_{13}^2\,s_{23}^2rac{\sin^2(A-1)\Delta}{(A-1)^2} \ &+ 2\,lpha\,s_{13}\,\sin2 heta_{12}\,\sin2 heta_{23}\cos(\Delta+\delta)\,rac{\sin A\Delta}{A}\,rac{\sin(A-1)\Delta}{A-1} \end{aligned}$$

where

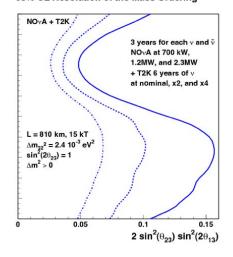

$$lpha = rac{\Delta m_{\odot}^2}{|\Delta m_{
m Atm}^2|} \sim 0.03, \hspace{0.5cm} \Delta = rac{\Delta m_{
m Atm}^2 L}{4E}, \hspace{0.5cm} \underline{A} = rac{2\sqrt{2}EG_F n_e}{\Delta m_{
m Atm}^2}$$

- ullet $\delta
 ightarrow -\delta$ and A
 ightarrow -A for $P_{ar{
 u}_{\mu}
 ightarrow ar{
 u}_{e}}$
- ullet $\Delta, A>0$ (normal), $\Delta, A<0$ (inverted)
- ullet In principle, determine $s_{13}, \delta,$ hierarchy (easier if s_{13} from reactor)


experiment	location	$oldsymbol{L}$ (km)	major mode	status
K2K	KEK-SuperK	250	$ u_{\mu}$ disappear	completed
NUMI-MINOS	Fermilab-Soudan	735	$ u_{\mu}, ar{ u}_{\mu}$ disappear	running
T2K	J-PARC-SuperK	295 O/A	$ u_{\mu} ightarrow u_{e}$	first events
OPERA	CERN-Gran Sasso	730	$ u_{\mu} ightarrow u_{ au}$	$ u_{ au}$ observed
$NO\nu A$	Fermilab-Ash River	810 O/A	$ u_{\mu}(ar{ u}_{\mu}) ightarrow u_{e}(ar{ u}_{e})$	construction

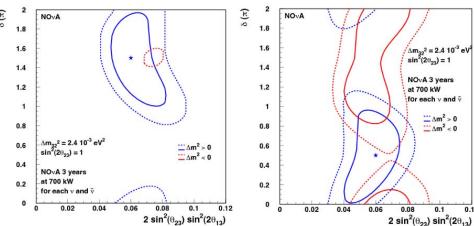


• Reactor + LBL: $s_{13}^2 \sim 10^{-3}$

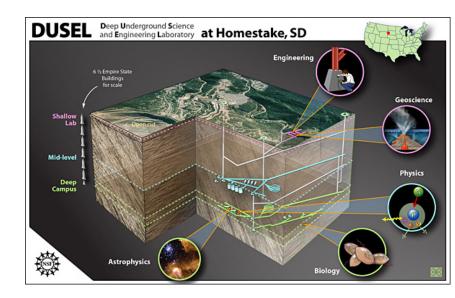


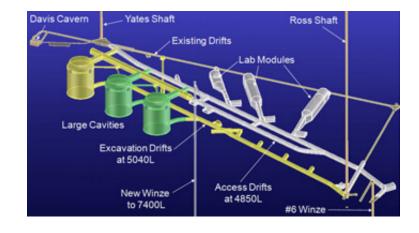
Huber, Lindner, Schwetz, Winter, 0907.1896

$NO\nu A$ and T2K



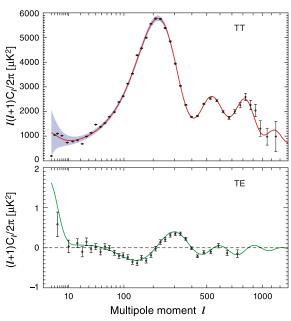
95% CL Resolution of the Mass Ordering


1 and 2 σ Contours for Starred Point for NOvA

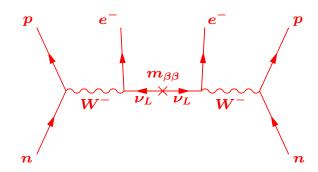

- Off-axis (narrow E)
- NO ν A: matter effects from long baseline
- NUMI intensity upgrade (400→700 kW)
- Possible Project X beam upgrade (~ 2 MW)
- Hierarchy and δ indication for favorable parameters

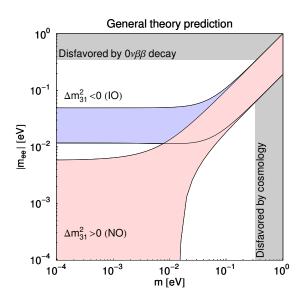
Long Baseline Neutrino Experiment (LBNE)

- Fermilab to Deep Underground Science and Engineering Lab (DUSEL) (1300 km)
- 300 KT water or 100 KT LAr detector (+ p decay, $au \sim 10^{34-35}$ yr)
- J-PARC to Kamioka + Korea
- CERN to ? (LAGUNA study)
- Neutrino factory ($\rightarrow \mu$ collider)
- \bullet β beams
- DAE δ ALUS (several stopped π beams)



Absolute Mass Scale

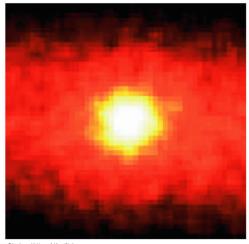

- ullet Tritium eta spectrum (KATRIN) $m_{
 u e} \equiv \left(\sum_i |U_{ei}^2| m_i^2
 ight)^{1/2}
 ightarrow 0.2 \; ext{eV}$
- ullet Cosmology (WMAP7, SDDS, H_0) $\Sigma \equiv \sum_i m_i < 0.58$ eV (95%)
- Future (Planck, ACTPol, CMBPol) $\Sigma \to 0.05 \; \mathrm{eV}$
- ullet $etaeta_{0
 u}$ observed ($m_{etaeta}\gtrsim 0.01$ eV) ightarrow inverted or degenerate



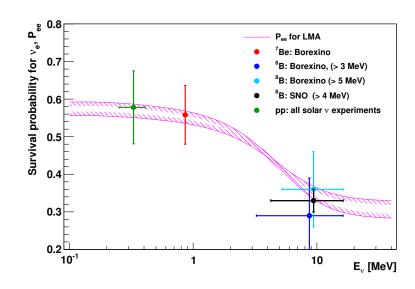
Dirac or Majorana: Neutrinoless Double β Decay $(\beta \beta_{0\nu})$

- $ullet nn
 ightarrow ppe^-e^- \ (m_{etaeta} \equiv \sum_i U_{ei}^2 m_i)$
- Nuclear matrix element uncertainties $(\Gamma \sim |A_{nuc}m_{etaeta}|^2)$
- Other mechanisms may dominate (e.g., SUSY R_P)
- ullet C HDM: $au_{1/2}(^{76}Ge) \sim 2 imes 10^{25} ext{ y}
 ightarrow m_{etaeta} \sim (0.16-0.52) ext{ eV}$
- Cuoricino: $au_{1/2}(^{130}Te) < 3.1 imes 10^{24} ext{ y} \ (90\%) o m_{etaeta} < (0.19-0.68) ext{ eV } (2\sigma)$
- Future exps sensitive to ~ 0.01 -0.02 eV (inverted or degenerate only)

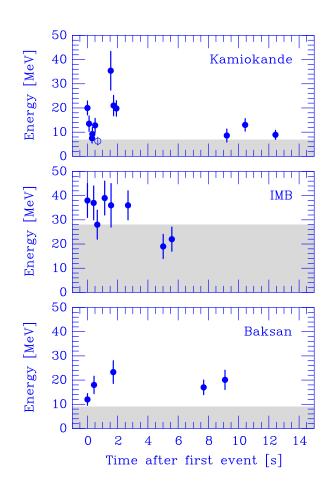
Winter, 1004.4160


Future $\beta \beta_{0\nu}$ Experiments

Isotope	$\mathrm{T}^{2 u}_{1/2}$	$\mathrm{T}_{1/2}^{0 u}$	Future	Mass	Lab
	(10^{19}y)	(10^{24}y)	Experiment	(kg)	
⁴⁸ Ca	$(4.4^{+0.6}_{-0.5})$	> 0.0014[31]	CANDLES		OTO
$^{76}\mathrm{Ge}$	(150 ± 10)	> 19[22]	GERDA	18-40	LNGS
		$22.3^{+4.4}_{-3.1}[29]$			
		> 15.7[23]	MAJORANA	60	SUSEL
$^{82}\mathrm{Se}$	(9.2 ± 0.7)	> 0.36 [25]	SuperNEMO	100	$_{ m LSM}$
$^{96}\mathrm{Zr}$	(2.3 ± 0.2)	> 0.0092[25]			
$^{100}\mathrm{Mo}$	(0.71 ± 0.04)	> 1.1[25]	MOON		OTO
$^{116}\mathrm{Cd}$	(2.8 ± 0.2)	> 0.17[32]			
$^{130}\mathrm{Te}$	(68 ± 12)	> 2.94	CUORE	204	LNGS
$^{136}\mathrm{Xe}$	> 81[33]	> 0.12[34]	EXO	160	WIPP
			KAMLAND	200	KAMIOKA
$^{150}\mathrm{Nd}$	(0.82 ± 0.09)	> 0.0036[35]	SNO+	56	SNOLAB


Cremonesi, 1002.1437

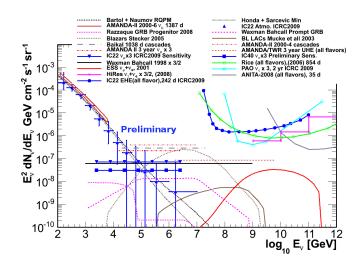
Solar neutrinos

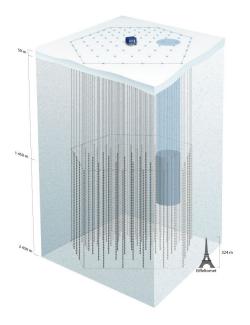

- ν 's and Sun
- MSW break observed
- pep/CNO neutrinos
- Metallicity conflict (helioseismology vs optical)
- Subdominant effects (sterile, μ_{ν} , interactions)
- Borexino, ICARUS, SNO+, LENA

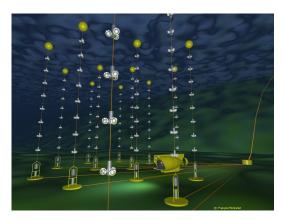
Copyright © 2004 Pearson Education, publishing as Addison Wesley.

Supernova neutrinos

- ullet Collapse of iron core of $M\gtrsim 8M_{\odot}$ star
- 99% of energy ($\gtrsim 3 \times 10^{53}$ ergs) radiated in neutrinos
- Neutronization pulse: $e^-p \rightarrow \nu_e n$ (ms)
- Bounce and expanding shock
- Neutrinosphere radiates $u_i + \bar{
 u}_i \ (\sim 10 \text{ s})$
- $\bar{\nu}_e$ observed for SN1987A (Large Magellanic Cloud)
 - Confirmed picture of SN dynamics
 - Limits on m_{ν} , μ_{ν} , new interactions

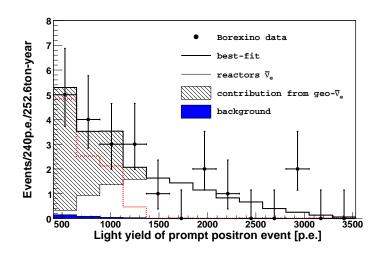

- Expect thousands of events for galactic SN (30-100 yr)
 - Detailed study of core-collapse supernova dynamics
 - SNEWS: The SuperNova Early Warning System (hours of warning and directionality)
 - Sensitive to obscured or failed supernovae
 - ν hierarchy, small s_{13} , mass scale (MSW, collective effects, time of flight)
- Keep detectors running for 50 yr!
- Experiments becoming sensitive to diffuse SN ν 's from other galaxies


Detector	Type	Mass (kton)	Location	Events at 8.5 kpc	Live period
Baksan	C_nH_{2n}	0.33	Caucasus	50	1980-present
Super-K	H_2O	32	Japan	8000	1996-present
LVD	C_nH_{2n}	1	Italy	300	1992-present
KamLAND	C_nH_{2n}	1	Japan	300	2002-present
MiniBooNE	C_nH_{2n}	0.7	USA	200	2002-present
Borexino	C_nH_{2n}	0.3	Italy	100	2005-present
IceCube	Long string	$0.4/\mathrm{PMT}$	South Pole	N/A	2007-present
SNO+	C_nH_{2n}	0.8	Canada	300	Near future
HALO	Pb	0.07	Canada	80	Near future
Icarus	Ar	0.6	Italy	230	Near future
$NO\nu A$	C_nH_{2n}	15	USA	3000	Near future
LBNE LAr	Liquid argon	5	USA	1900	Future
LBNE WC	H_2O	300	USA	78,000	Future
MEMPHYS	H_2O	440	Europe	120,000	Future
Hyper-K	H_2O	500	Japan	130,000	Future
LENA	C_nH_{2n}	50	Europe	15,000	Future
GLACIER	Ar	100	Europe	38,000	Future


Scholberg, J. Phys. Conf. Ser., 203, 012079

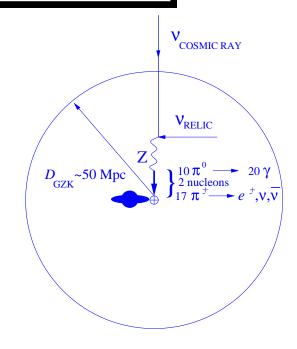
Neutrinos as Cosmic Rays/Secondaries

- Atmospheric neutrinos
- IceCube (+ Deep Core) and Antares
 - High energy sources (AGN, GRB)
 - Dark matter annihilation
 - $-\nu$ spectrum, decay, properties
 - Ultra HE ν interactions
 - Cosmic ray composition



Geoneutrinos

- Energy output of Earth
 (30-45 TW) not well understood
- Radiogenic heat production: $(E_{ar{
 u}e} < 2.6$ MeV for ^{238}U and ^{232}Th chains)
- KamLAND observation
- Recent Borexino: consistent with observed (georeactor at core excluded)
- Future: SNO+, LENA



The Ultimate Challenge: Relic Neutrinos

- $u_i, \bar{\nu}_i$ decoupled at \sim few MeV (relativistic)
- Redshifted to form of relativistic thermal distribution

$$(T_
u \sim \left(rac{4}{11}
ight)^{1/3} T_\gamma \sim 1.9 K$$
, $n_{
u_i} \sim 50/{
m cm}^3)$

• Indirect: BBN ($N_
u=3.2\pm1.2$ at $z\sim10^{10}$); WMAP7+SDSS+ H_0 ($N_
u=4.3\pm0.9$ at $z\sim10^3$)

- Direct detection extraordinarily difficult (22th century)
 - Macroscopic forces $(O(G_F^2))$ or torques $(O(G_F))$
 - u-induced e^{\pm} emission by nuclei
 - Z- burst: resonant annihilation of ultra-high energy (10^{22-23} eV) cosmic ν (source? flux?)

Conclusions

• Neutrino physics is extremely interesting

Conclusions

- Neutrino physics is extremely interesting
- Neutrino physics is extremely difficult

Neutrino Preliminaries

Weyl fermion

- Minimal (two-component) fermionic degree of freedom
- $-\;\psi_L \leftrightarrow \psi_R^c \; ext{by CPT}$
- Active Neutrino (a.k.a. ordinary, doublet)
 - in SU(2) doublet with charged lepton ightarrow normal weak interactions
 - $u_L \leftrightarrow
 u_R^c$ by CPT
- Sterile Neutrino (a.k.a. singlet, right-handed)
 - -SU(2) singlet; no interactions except by mixing, Higgs, or BSM
 - $N_R \leftrightarrow N_L^c$ by CPT
 - Almost always present: Are they light? Do they mix?

Dirac Mass

- Connects distinct Weyl spinors (usually active to sterile): $(m_D \bar{\nu}_L N_R + h.c.)$
- 4 components, $\Delta L=0$
- $-\Delta I=rac{1}{2}$ ightarrow Higgs doublet
- Why small? (Large dimensions? Higherdimensional operators? String instantons?)

$$egin{array}{c|cccc}
u_L & v = \langle \phi
angle \ h & \cdots & \cdots & \cdots \ N_R & m_D = hv \end{array}$$

Majorana Mass

– Connects Weyl spinor with itself:

$$rac{1}{2}(m_Tar
u_L
u_R^c+h.c.)$$
 (active); $rac{1}{2}(m_Sar N_L^cN_R+h.c.)$ (sterile)

- 2 components, $\Delta L=\pm 2$
- Active: $\Delta I = 1$ (triplet or higher-dimensional operator)
- Sterile: $\Delta I = 0$ (singlet or bare mass)

Mixed Masses

- Majorana and Dirac mass terms
- Seesaw for $m_S\gg m_D$: $m_T\sim M_D^2/m_S$
- Ordinary-sterile mixing for m_S and m_D both small and comparable